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Abstract: By using convolutional neural networks, also known as CNN or convnets, an artificial vision system was programmed and
trained in order to classify and detect nuclei in histology images. Basically, this vision system is a proof-of-concept that could lead to
the partial automatization of the work of pathologists. Thus, this vision system could potentially help many patients, save lives,
reduce healthcare costs, and save the time and efforts of pathologists.

Introduction

Motivation and Background

Today,  pathologists  sit  under  microscopes  day  and  night  to
count and to distinguish nuclei in histology images. Pathologists
have  to  do  this  tedious  process  in  order  to  understand  the
diseases of patients. For example,  pathologists could ask: Do
patients have cancerous tumors? If so, to what extent? 

This task can be very tedious and prone to human error. The
more  pathologists  get  tired,  the  more  their  capability  to
correctly diagnose nuclei drops. These errors could be deathly
and cost the lives of patients. This process is also very slow and
there is a very limited number of pathologists. The rate at which
we require to process these slides is intense and automating this
process could help to improve and to save many lives and the
precious time of pathologists. 

Moreover,  automating this process could decrease the cost of
lab  tests,  making  them more  accessible  to  poor  people  who
desperately need lab tests and cannot afford them. Diseases and
economical  problems  usually  come  together  and  are  highly
correlated.

Literature Survey

Previously, many works in this field have been done. Here are
the approaches tried:
• Locality sensitive deep learning approaches to detect and

classify  nuclei  in  routine  hematoxylin  and  eosin  (H&E)
stained  histopathology  images  of  colorectal
adenocarcinoma, based on convolutional neural networks
(CNN). [1]

• Cosatto et al.  [2] detected cell nuclei using difference of
Gaussian  (DoG)  followed  by  Hough  transform  to  find
radially symmetrical shapes.

• Al Kofahi et  al.  [3] proposed a graph cut-based method
that is initialized using response of the image to Laplacian
of Gaussian (LoG) filter.

• Arteta  et  al.  [4]  employed  maximally  stable  extremal
regions  for  detection,  which  is  likely  to  fall  victim  to
weakly stained nuclei  or nuclei  with irregular chromatin
texture. 

• Vink et al. [5] employed AdaBoost classifier to train two
detectors,  one  using  pixel-based  features  and  the  other
based on Haar-like features, and merged the results of two
detectors  to  detect  the  nuclei  in  immunohistochemistry
stained  breast  tissue  images.  The  performance  of  the
method  was  found  to  be  limited  when  detecting  thin
fibroblasts and small nuclei.

However, this vision system uses convnets due to their superior
performance when classifying images. 

Method

Pipeline

The pipeline for the visual system has the following processes,
also represented in Figure 1: 
• Reading the dataset of images.
• Splitting data into train, validation, and test datasets.
• Cropping tumor subimages from images.
• Removing subimages with black padding.
• Normalizing image pixels to [-1, 1].
• Training convnets and meta-optimizing parameters.
• Selecting  the  best  model.  (Notice  that  convnets

automatically extract features.)
• Testing the best classifier.
• Detecting classes of nuclei in images of the test dataset.

Figure 1: Pipeline

Splitting Data into Train, Validation, and Test Datasets

Once  images  are  read  from disk,  images  are  divided  into  3
datasets and placed in their corresponding directories:
• training dataset (60%);
• cross-validation dataset (20%);
• and testing dataset (20%).

Cropping Tumor Subimages from Images

Each histology image contains many tumors like the following
figure. Those tumor subimages were extracted and saved in a
different directory structure to train and to test the classifier. For
each annotation in the data set, a square patch of variable size
was cut around annotation and used as a subimage. The patch
size varied from every other integer between 12 to 32. 



Figure 2: Example of an image and a tumor subimage [1]

In this step, an additional process to whats provided in the data
is  done:  Cropping  subimages  of  background  which  do  not
contain  any  marked  nuclei.  By creating  a  new category,  the
background category, the detection process reduced the number
of  false  positives.  The  background  category  is  crucial  for
achieving greater accuracy in detection.

Removing Subimages with Black Padding

Some  subimages  were  nearby  corners  and  edges  and  were
padded with black pixels to fill the voids. As there were only a
small  fraction  of  such  cases,  these  subimages  with  black
padding  were  removed  from  the  dataset  to  clean  it  from
impurities instead increasing the complexity to find which color
would not interfere with our results.

Normalizing Image Pixels to [-1, 1]

Images are stored in RGB format. RGB stands for red, green,
and blue. Each RGB value is usually stored as an integer in the
range [0, 255]. However, PyTorch represents image tensors with
RGB  values  in  the  range  [0,  1].  Deep  learning  experts
recommend to normalize this range to [-1, 1], so that the center
is  located  at  0.  In  this  way,  neural  networks  have  better
convergence for learning.

Training Convnets

Convnets were created using PyTorch. In the following figure,
the diagram of the selected convnet is shown. Many models of
convnets  were  explored.  This  model  was  selected  due  to  its
better performance according to the metrics. Diagrams of other
models are omitted due to space limitation.

Figure 3: Diagram of the Convnet

Here is a brief description of the connections programmed in
PyTorch, where each value is a variable and a grid search was
done to find the best value:

Connections 1:
ReLU(  Conv2d(  in_channels  =  3,  out_channels  =  in_channels_2,
kernel_size1 = 4 ) )
MaxPool2d( kernel_size = 2, stride = 2 )

Connections 2:
ReLU(  Conv2d(  in_channels  =  in_channels_2,  out_channels  =
out_channels_2, kernel_size2 = 4 ) )
MaxPool2d( kernel_size = 2, stride = 2 )

Connections 3:
dim_size = ( ( ( patch_size – kernel_size1 ) / 2) – kernel_size2 ) / 2
ReLU( Linear( in_features = out_channels_2 * dim_size * dim_size,
out_features = hidden_2 ) )

Connections 4:
ReLU( Linear( in_features = hidden_2, out_features = hidden_3 ) )

Connections 5: 
Max( Linear( in_features = hidden_3, out_features = 5 ) )

Table 1: CNN connections programmed in PyTorch

Regarding  the  criteria  for  stopping  learning  to  prevent
overfitting,  formula (1)  describes its mechanism. The convnet
should stop learning when the current validation loss (VL) is
relatively greater  than the minimum validation loss  (MinVL)
found so  far  by  an  epsilon  percentage.  The  default  value  is
epsilon = 0.10. Each time a new minimum is found, the current
convnet is  entirely saved on disk in  order to  be loaded after
learning  is  stopped.  Statistics  are  computed  with  the  best
convnet found and saved.

(VL−MinVL)/ MinVL>ϵ (1)

According to the stopping criteria explained above, the convnet
should stop learning at epoch 34 in graph 4. However, the best
convnet was found and saved on disk at epoch 21 because in
this epoch the convnet has the minimum validation loss.

Figure 4: Example of learning curve

Meta-optimizing Parameters

Basically, there are 3 ways to meta-optimize the parameters of
convnets:
• varying only 1 parameter at  once and keeping the other

parameters constant (Var1);
• varying all  parameters  at  once without  keeping constant

parameters (VarAll);
• and varying a group of parameters at once and keeping the

other parameters constant (VarN).

Based on the pros and cons mentioned in  Table 2  and due to
time  and  computational  limitations,  this  project  was  meta-
optimized by using the method VarN. While the results were not
perfect they were really good.



Meta-
Optimization

Method
Completeness Time

Var1
Incomplete because
it does not exploit 
synergies

Linear (Fast)

VarN
Acceptable but not 
complete

Sum of low 
exponentials
(Reasonably slow)

VarAll

Complete with 
respect to the lists 
of values to explore

Exponential in the 
number of 
parameters 
(Extremely slow)

Table 2:  Pros and Cons of Meta-optimization methods

Selecting the Best Model and Testing It

For  each  run  of  the  meta-optimization  process,  a  file
TABLE.CSV was generated in the log/<RUN> directory. This
table contains lots of columns with important information about
the training  process  of  each  convnet  for  the  input  parameter
combination.

At this stage one has the best model for classification, however,
one should not have access to the results from the test set for the
detection problem. Using, the best model could be considered
cheating.  Hence,   the  best  model  was  chosen  based  on
validation results only. Fscore was used to determine the best
model.

Once the best model is selected for detection, then more results
are  computed  for  the  classification  problem  to  determine
models performance.

Detecting classes of nuclei in images of the test dataset

In this step, this project goes one step further than the original
paper [1]. In the original paper, nuclei are detected regardless of
their  class.  In  this  project,  nuclei  are  detected and classified
according to their class.

Since  the  detection  process  uses  no  meta-parameters  to
optimize, it is safe to evaluate its performance directly in the
test dataset. However, for the sake of completeness, the system
generates  detection  images  and  statistics  for  both  validation
dataset (20%) and test dataset (20%). But, only the results of the
test dataset will be shown in order to avoid selection bias, aka
cheating.  Why?  Because  meta-parameters  were  selected  with
the statistics of the validation dataset and thus, the performance
in the validation dataset is much better.

Detected images were computed in this way: A sliding window
was  passed  through the  image  with  stride  =  1,  generating  a
winning class for each pixel, which is colored accordingly. Here
are the colors associated to each class:

Class Associated Color

Epithelial nuclei RED

Fibroblast nuclei GREEN

Inflammatory nuclei BLUE

Miscelaneous nuclei BLACK

Background WHITE

Table 3: Classes and associated colors

The statistics of detection were computed in this way: A sliding
window  was  passed  through  the  image  with  stride   =
patch_size / 2, generating a winning class for each point. Then
each point is associated to the nearest marked nucleus in ground
truth, only if such marked nucleus is not too far. Nearest marked
nuclei  whose  distance  is  greater  than  patch_size  are  not
associated to points.

True positives are points whose associated nucleus match their
class.  True  negatives  are  marked  nuclei  without  associated
points. False positives are points whose associated nucleus do
not match their class. False positives are also points with a class
and  without  associated  nuclei.  False  negatives  are  points
classified as background with an associated nucleus.

Experiments

Experimental Setup

Everything  was  programmed  in  Python.  Convnets  were
programmed in PyTorch. Python’s library Pillow was used for
image operations. Big Data analytics was done with PySpark.
Basically,  the processes to be done in each major stage were
distributed among many processors by using RDD. There are 3
major  stages:  Preprocessing  of  images,  meta-optimization  of
learning, and detection.

The  virtual  machine  nvidia-docker  was  used  in  order  to
guarantee  consistency  when  running  the  project  in  different
machines. The local machines to develop the system are:

Machine 1: Operative System: Mac OS. Processor: 2.9 GHz i7.
Memory: 16GB RAM. Graphics: Intel HD graphics 630. Disks:
1536 Gb SATA and 512 SSD.

Machine 2: Operative System: Linux. Processor: 3.5 GHZ i7.
Memory: 16GB RAM. Graphics: NVIDIA® GeForce® 940MX
(4GB DDR3 dedicated). Disks: 1 Tb SATA and 256 SSD.

Machine 3: Operative System: Ubuntu 16.04  LTS (64 bits).
Memory: 15,7 Gb RAM. Processor: AMD FX™-6300 Six-Core
Processor  x  6.  Graphics:  GeForce  GTX  TITAN
Black/PCIe/SSE2. Disks: 868,9 Gb and 5 Tb.

Data

This  dataset  involves  100  H&E stained  histology  images  of
colorectal  adenocarcinomas from 9 patients (the cohort),  at  a
pixel resolution of 0.55 µm/pixel (20× optical magnification).
All images have a size of 500 × 500 pixels.  A total number of
29,756 nuclei were marked at the center for detection purposes.
Out  of  which,  there  were  22,444  nuclei  that  also  have  an
associated class label,  i.e.  epithelial,  inflammatory,  fibroblast,
and  miscellaneous.  In  total,  there  are  7,722  epithelial,  5,712
fibroblast, 6,971 inflammatory, and 2,039 miscellaneous nuclei
(other).  The nuclei that do not fall into the first three categories
(i.e., epithelial, inflammatory, and fibroblast) such as adipocyte,
endothelium, mitotic figure, nucleus of necrotic (i.e., dead) cell,
etc. are labeled as miscellaneous. [1] The dataset can be found
in the following link:

CRCHistoPhenotypes - Labeled Cell Nuclei Data
https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data/crchis
tolabelednucleihe/

https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/
https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/


Figure 5: Classes of nuclei [1]

Baseline Experiment

Random Classifier:  The dataset contains 5 classes.  A model
which randomly picks a class and claims that to be the result
would produce a theoretical accuracy of 20% for each class:

Figure 6: Theoretical statistics of random classifier

Original Paper [1]: The paper has limited results that can be
directly compared with our results. However, we try our best
efforts to limit and convert our results to make them apples to
apples  comparison.  The  best  F-score  seen  in  that  paper  was
0.784 and for detection they show that they got precision, recall,
f-score as  0.758, 0.827, 0.791 respectively.

Results and Analysis for Classification

Convnets were trained by using combinations of the following
values.  However,  to  select  these  ranges  we  first  ran  each
parameter independently to find what results better.:

Meta-parameter List of values

batch_size 150, 250

learning_rate 0.001,  0.005,  0.01,  0.025,
0.03, 0.04, 0.05

momentum 0.2, 0.4, 0.5, 0.6, 0.7

hidden_2 100, 120, 140, 160

hidden_3 40, 60, 80, 100

in_channels_2 6, 10, 14, 16, 18

out_channels_2 8, 10, 12, 16, 20

patch_size 16, 20, 24, 28

Table 4: Meta-parameters and their lists of values

If  the  meta-optimization  method  VarAll  had  been  used,  the
amount of combinations to train would have been 2 * 7 * 5 * 4
* 4 * 5 * 5 * 4 = 112,000, which are impossible to evaluate due
to time and computational constraints.

Fortunately,  the  meta-optimization  method  VarN  was  used
instead,  varying  only  groups  of  parameters  at  once.  VarN
generated only 75 combinations, which is tractable. From the 75
combinations,  here  is  a  table  with the 10 best  combinations,
based on the best F-Score of the validation dataset:

Learning
rate

Momentum Hidden 2 Hidden 3 F-Score
(VALID)

0.025 0.6 140 60 0.708

0.025 0.6 120 60 0.699

0.05 0.5 140 60 0.698

0.02 0.6 140 60 0.697

0.025 0.6 120 80 0.696

0.025 0.6 100 60 0.696

0.025 0.4 120 80 0.694

0.025 0.6 140 100 0.693

0.03 0.7 140 60 0.692

0.05 0.7 140 60 0.692

Table 5: Top 10 models of convnets and their parameters

In  this  table,  many  columns  where  omitted  for  the  sake  of
brevity. These omitted columns include batch_size (with value
of 250 for the ten rows), in_channels_2 (with value of 16 for the
ten rows), out_channels_2 (with value of 10 for the ten rows),
and patch_size (with value of 24 for the ten rows). Moreover,
the average training time was 1218.28 seconds and the average
amount of epochs was 69.77.

After  this  long  and  painful  meta-optimization  process,  the
following combination of values was selected:

TrainClassifier parameters ConvNet parameters

batch_size = 250
learning_rate =  0.025
momentum =  0.6

hidden_2 =  140
hidden_3 =  60
in_channels_2 =  16
out_channels_2 =  10
patch_size = 24

Table 6: Parameters used by the best classifier

This combination of values was evaluated in the test dataset,
producing the following results:

Figure 7: Statistics of best classifier in the test dataset

The  accuracies  of  epithelial,  inflammatory,  and  background
classes are high. The accuracy of the fibroblast class is decent.
And the accuracy of the miscellaneous class is bad. The F-Score



is good enough. Compared to the F-Score of the original paper
we did not do that well, but it was close. 

Results and Analysis for Detection

Once  the  best  classifier  was  selected,  the  detection  software
should use the best classifier to scan images pixel by pixel. In
the 2 next figures, detection was pretty accurate. Compare the
marked nuclei based on ground truth on the right of each image
and the detection results on the left.

Figure 8: Example of detection in img89.png

Figure 9: Example of detection in img81.png

Not all results were satisfying. In the next figure, the red class
(epithelial nuclei) produced many false positives. This can be
improved by exploring more the meta-parameters and the neural
architectures of the convnets. More layers, deeper learning, are
probably required. 

Figure 10: Example of detection in img69.png

The detection statistics of the test dataset are good. The average
F-score is 0.47 and the average accuracy is 0.73, with standard
deviations of  0.16 approximately.  Accuracy is higher  than F-
score because the accuracy of the background classifier is high,
which  makes  the  amount  of  true  negatives  very  big.  The
background classifier has a high accuracy because background
is the most abundant class, covering more than 75% of the area
of  images  approximately.  More  data  produce  more  accurate
classifiers.

Figure 11: Detection statistics compared to original paper

Conclusion

Based on the experiments and observations, there is potential in
this project. However, more exploration is required to achieve
greater performance. The meta-optimization process should be
better distributed among multiple processors in the cloud. The
motivation to achieve better results is imperative because this
will help the healthcare industry in a huge and unquantifiable
way. Human lives cost more than money.

Even if this algorithm is not 100% accurate, it should be better
than the average performance of  humans to  be adopted as  a
reliable and groundbreaking technology. This is a requirement
for every AI system which is supposed to recommend actions
and perceptions to humans.

Making  the  visual  classifier  stronger  is  paramount  for  new
versions  of  the  project.  The  classifier  should  emit  confident
signals when it is  passed at the center of tumors,  and should
avoid false positives as well.

The miscellaneous category of tumors is hard to predict because
this category is ill-defined. In other words, many categories of
tumors that rarely appear are grouped together to form a bigger
category.  However,  this  should  not  be  a  problem  for  deep
learning because deeper and wider convnets should be able to
make  a  good  variety  of  complex  features  capable  of
characterizing  these  ill-defined  and  less  frequent  categories.
However,  tuning  such  neural  topologies  is  hard  due  to  the
exponential  nature  of  meta-optimization  methods  and  the
computational cost of training neural networks.

Creating the background class definitely improved results and
reduced the amount of false positives. By using only 4 classes,
the initial images were totally green, implying the detector saw
fibroblasts everywhere, which is wrong. When using 5 classes,
the  detected  images  improved  dramatically,  making  the
observer feel that the vision system is starting to gain visual
awareness.
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