
Classification and Detection of Nuclei in Histology Images
Using Convolutional Neural Networks

Archit Khosla, B.Sc. Computer Science1, Juan C. Kuri, B.Sc. Computer Engineering2

1University of California San Diego, USA; 2ESPOL, Ecuador

Abstract: By using convolutional neural networks, also known as CNN or convnets, an artificial vision system was programmed and
trained in order to classify and detect nuclei in histology images. Basically, this vision system is a proof-of-concept that could lead to
the partial automatization of the work of pathologists. Thus, this vision system could potentially help many patients, save lives,
reduce healthcare costs, and save the time and efforts of pathologists.

Introduction

Motivation and Background

Today, pathologists sit under microscopes day and night to
count and to distinguish nuclei in histology images. Pathologists
have to do this tedious process in order to understand the
diseases of patients. For example, pathologists could ask: Do
patients have cancerous tumors? If so, to what extent?

This task can be very tedious and prone to human error. The
more pathologists get tired, the more their capability to
correctly diagnose nuclei drops. These errors could be deathly
and cost the lives of patients. This process is also very slow and
there is a very limited number of pathologists. The rate at which
we require to process these slides is intense and automating this
process could help to improve and to save many lives and the
precious time of pathologists.

Moreover, automating this process could decrease the cost of
lab tests, making them more accessible to poor people who
desperately need lab tests and cannot afford them. Diseases and
economical problems usually come together and are highly
correlated.

Literature Survey

Previously, many works in this field have been done. Here are
the approaches tried:
• Locality sensitive deep learning approaches to detect and

classify nuclei in routine hematoxylin and eosin (H&E)
stained histopathology images of colorectal
adenocarcinoma, based on convolutional neural networks
(CNN). [1]

• Cosatto et al. [2] detected cell nuclei using difference of
Gaussian (DoG) followed by Hough transform to find
radially symmetrical shapes.

• Al Kofahi et al. [3] proposed a graph cut-based method
that is initialized using response of the image to Laplacian
of Gaussian (LoG) filter.

• Arteta et al. [4] employed maximally stable extremal
regions for detection, which is likely to fall victim to
weakly stained nuclei or nuclei with irregular chromatin
texture.

• Vink et al. [5] employed AdaBoost classifier to train two
detectors, one using pixel-based features and the other
based on Haar-like features, and merged the results of two
detectors to detect the nuclei in immunohistochemistry
stained breast tissue images. The performance of the
method was found to be limited when detecting thin
fibroblasts and small nuclei.

However, this vision system uses convnets due to their superior
performance when classifying images.

Method

Pipeline

The pipeline for the visual system has the following processes,
also represented in Figure 1:
• Reading the dataset of images.
• Splitting data into train, validation, and test datasets.
• Cropping tumor subimages from images.
• Removing subimages with black padding.
• Normalizing image pixels to [-1, 1].
• Training convnets and meta-optimizing parameters.
• Selecting the best model. (Notice that convnets

automatically extract features.)
• Testing the best classifier.
• Detecting classes of nuclei in images of the test dataset.

Figure 1: Pipeline

Splitting Data into Train, Validation, and Test Datasets

Once images are read from disk, images are divided into 3
datasets and placed in their corresponding directories:
• training dataset (60%);
• cross-validation dataset (20%);
• and testing dataset (20%).

Cropping Tumor Subimages from Images

Each histology image contains many tumors like the following
figure. Those tumor subimages were extracted and saved in a
different directory structure to train and to test the classifier. For
each annotation in the data set, a square patch of variable size
was cut around annotation and used as a subimage. The patch
size varied from every other integer between 12 to 32.

Figure 2: Example of an image and a tumor subimage [1]

In this step, an additional process to whats provided in the data
is done: Cropping subimages of background which do not
contain any marked nuclei. By creating a new category, the
background category, the detection process reduced the number
of false positives. The background category is crucial for
achieving greater accuracy in detection.

Removing Subimages with Black Padding

Some subimages were nearby corners and edges and were
padded with black pixels to fill the voids. As there were only a
small fraction of such cases, these subimages with black
padding were removed from the dataset to clean it from
impurities instead increasing the complexity to find which color
would not interfere with our results.

Normalizing Image Pixels to [-1, 1]

Images are stored in RGB format. RGB stands for red, green,
and blue. Each RGB value is usually stored as an integer in the
range [0, 255]. However, PyTorch represents image tensors with
RGB values in the range [0, 1]. Deep learning experts
recommend to normalize this range to [-1, 1], so that the center
is located at 0. In this way, neural networks have better
convergence for learning.

Training Convnets

Convnets were created using PyTorch. In the following figure,
the diagram of the selected convnet is shown. Many models of
convnets were explored. This model was selected due to its
better performance according to the metrics. Diagrams of other
models are omitted due to space limitation.

Figure 3: Diagram of the Convnet

Here is a brief description of the connections programmed in
PyTorch, where each value is a variable and a grid search was
done to find the best value:

Connections 1:
ReLU(Conv2d(in_channels = 3, out_channels = in_channels_2,
kernel_size1 = 4))
MaxPool2d(kernel_size = 2, stride = 2)

Connections 2:
ReLU(Conv2d(in_channels = in_channels_2, out_channels =
out_channels_2, kernel_size2 = 4))
MaxPool2d(kernel_size = 2, stride = 2)

Connections 3:
dim_size = (((patch_size – kernel_size1) / 2) – kernel_size2) / 2
ReLU(Linear(in_features = out_channels_2 * dim_size * dim_size,
out_features = hidden_2))

Connections 4:
ReLU(Linear(in_features = hidden_2, out_features = hidden_3))

Connections 5:
Max(Linear(in_features = hidden_3, out_features = 5))

Table 1: CNN connections programmed in PyTorch

Regarding the criteria for stopping learning to prevent
overfitting, formula (1) describes its mechanism. The convnet
should stop learning when the current validation loss (VL) is
relatively greater than the minimum validation loss (MinVL)
found so far by an epsilon percentage. The default value is
epsilon = 0.10. Each time a new minimum is found, the current
convnet is entirely saved on disk in order to be loaded after
learning is stopped. Statistics are computed with the best
convnet found and saved.

(VL−MinVL)/ MinVL>ϵ (1)

According to the stopping criteria explained above, the convnet
should stop learning at epoch 34 in graph 4. However, the best
convnet was found and saved on disk at epoch 21 because in
this epoch the convnet has the minimum validation loss.

Figure 4: Example of learning curve

Meta-optimizing Parameters

Basically, there are 3 ways to meta-optimize the parameters of
convnets:
• varying only 1 parameter at once and keeping the other

parameters constant (Var1);
• varying all parameters at once without keeping constant

parameters (VarAll);
• and varying a group of parameters at once and keeping the

other parameters constant (VarN).

Based on the pros and cons mentioned in Table 2 and due to
time and computational limitations, this project was meta-
optimized by using the method VarN. While the results were not
perfect they were really good.

Meta-
Optimization

Method
Completeness Time

Var1
Incomplete because
it does not exploit
synergies

Linear (Fast)

VarN
Acceptable but not
complete

Sum of low
exponentials
(Reasonably slow)

VarAll

Complete with
respect to the lists
of values to explore

Exponential in the
number of
parameters
(Extremely slow)

Table 2: Pros and Cons of Meta-optimization methods

Selecting the Best Model and Testing It

For each run of the meta-optimization process, a file
TABLE.CSV was generated in the log/<RUN> directory. This
table contains lots of columns with important information about
the training process of each convnet for the input parameter
combination.

At this stage one has the best model for classification, however,
one should not have access to the results from the test set for the
detection problem. Using, the best model could be considered
cheating. Hence, the best model was chosen based on
validation results only. Fscore was used to determine the best
model.

Once the best model is selected for detection, then more results
are computed for the classification problem to determine
models performance.

Detecting classes of nuclei in images of the test dataset

In this step, this project goes one step further than the original
paper [1]. In the original paper, nuclei are detected regardless of
their class. In this project, nuclei are detected and classified
according to their class.

Since the detection process uses no meta-parameters to
optimize, it is safe to evaluate its performance directly in the
test dataset. However, for the sake of completeness, the system
generates detection images and statistics for both validation
dataset (20%) and test dataset (20%). But, only the results of the
test dataset will be shown in order to avoid selection bias, aka
cheating. Why? Because meta-parameters were selected with
the statistics of the validation dataset and thus, the performance
in the validation dataset is much better.

Detected images were computed in this way: A sliding window
was passed through the image with stride = 1, generating a
winning class for each pixel, which is colored accordingly. Here
are the colors associated to each class:

Class Associated Color

Epithelial nuclei RED

Fibroblast nuclei GREEN

Inflammatory nuclei BLUE

Miscelaneous nuclei BLACK

Background WHITE

Table 3: Classes and associated colors

The statistics of detection were computed in this way: A sliding
window was passed through the image with stride =
patch_size / 2, generating a winning class for each point. Then
each point is associated to the nearest marked nucleus in ground
truth, only if such marked nucleus is not too far. Nearest marked
nuclei whose distance is greater than patch_size are not
associated to points.

True positives are points whose associated nucleus match their
class. True negatives are marked nuclei without associated
points. False positives are points whose associated nucleus do
not match their class. False positives are also points with a class
and without associated nuclei. False negatives are points
classified as background with an associated nucleus.

Experiments

Experimental Setup

Everything was programmed in Python. Convnets were
programmed in PyTorch. Python’s library Pillow was used for
image operations. Big Data analytics was done with PySpark.
Basically, the processes to be done in each major stage were
distributed among many processors by using RDD. There are 3
major stages: Preprocessing of images, meta-optimization of
learning, and detection.

The virtual machine nvidia-docker was used in order to
guarantee consistency when running the project in different
machines. The local machines to develop the system are:

Machine 1: Operative System: Mac OS. Processor: 2.9 GHz i7.
Memory: 16GB RAM. Graphics: Intel HD graphics 630. Disks:
1536 Gb SATA and 512 SSD.

Machine 2: Operative System: Linux. Processor: 3.5 GHZ i7.
Memory: 16GB RAM. Graphics: NVIDIA® GeForce® 940MX
(4GB DDR3 dedicated). Disks: 1 Tb SATA and 256 SSD.

Machine 3: Operative System: Ubuntu 16.04 LTS (64 bits).
Memory: 15,7 Gb RAM. Processor: AMD FX™-6300 Six-Core
Processor x 6. Graphics: GeForce GTX TITAN
Black/PCIe/SSE2. Disks: 868,9 Gb and 5 Tb.

Data

This dataset involves 100 H&E stained histology images of
colorectal adenocarcinomas from 9 patients (the cohort), at a
pixel resolution of 0.55 µm/pixel (20× optical magnification).
All images have a size of 500 × 500 pixels. A total number of
29,756 nuclei were marked at the center for detection purposes.
Out of which, there were 22,444 nuclei that also have an
associated class label, i.e. epithelial, inflammatory, fibroblast,
and miscellaneous. In total, there are 7,722 epithelial, 5,712
fibroblast, 6,971 inflammatory, and 2,039 miscellaneous nuclei
(other). The nuclei that do not fall into the first three categories
(i.e., epithelial, inflammatory, and fibroblast) such as adipocyte,
endothelium, mitotic figure, nucleus of necrotic (i.e., dead) cell,
etc. are labeled as miscellaneous. [1] The dataset can be found
in the following link:

CRCHistoPhenotypes - Labeled Cell Nuclei Data
https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data/crchis
tolabelednucleihe/

https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/
https://www2.warwick.ac.uk/fac/sci/dcs/research/tia/data/crchistolabelednucleihe/

Figure 5: Classes of nuclei [1]

Baseline Experiment

Random Classifier: The dataset contains 5 classes. A model
which randomly picks a class and claims that to be the result
would produce a theoretical accuracy of 20% for each class:

Figure 6: Theoretical statistics of random classifier

Original Paper [1]: The paper has limited results that can be
directly compared with our results. However, we try our best
efforts to limit and convert our results to make them apples to
apples comparison. The best F-score seen in that paper was
0.784 and for detection they show that they got precision, recall,
f-score as 0.758, 0.827, 0.791 respectively.

Results and Analysis for Classification

Convnets were trained by using combinations of the following
values. However, to select these ranges we first ran each
parameter independently to find what results better.:

Meta-parameter List of values

batch_size 150, 250

learning_rate 0.001, 0.005, 0.01, 0.025,
0.03, 0.04, 0.05

momentum 0.2, 0.4, 0.5, 0.6, 0.7

hidden_2 100, 120, 140, 160

hidden_3 40, 60, 80, 100

in_channels_2 6, 10, 14, 16, 18

out_channels_2 8, 10, 12, 16, 20

patch_size 16, 20, 24, 28

Table 4: Meta-parameters and their lists of values

If the meta-optimization method VarAll had been used, the
amount of combinations to train would have been 2 * 7 * 5 * 4
* 4 * 5 * 5 * 4 = 112,000, which are impossible to evaluate due
to time and computational constraints.

Fortunately, the meta-optimization method VarN was used
instead, varying only groups of parameters at once. VarN
generated only 75 combinations, which is tractable. From the 75
combinations, here is a table with the 10 best combinations,
based on the best F-Score of the validation dataset:

Learning
rate

Momentum Hidden 2 Hidden 3 F-Score
(VALID)

0.025 0.6 140 60 0.708

0.025 0.6 120 60 0.699

0.05 0.5 140 60 0.698

0.02 0.6 140 60 0.697

0.025 0.6 120 80 0.696

0.025 0.6 100 60 0.696

0.025 0.4 120 80 0.694

0.025 0.6 140 100 0.693

0.03 0.7 140 60 0.692

0.05 0.7 140 60 0.692

Table 5: Top 10 models of convnets and their parameters

In this table, many columns where omitted for the sake of
brevity. These omitted columns include batch_size (with value
of 250 for the ten rows), in_channels_2 (with value of 16 for the
ten rows), out_channels_2 (with value of 10 for the ten rows),
and patch_size (with value of 24 for the ten rows). Moreover,
the average training time was 1218.28 seconds and the average
amount of epochs was 69.77.

After this long and painful meta-optimization process, the
following combination of values was selected:

TrainClassifier parameters ConvNet parameters

batch_size = 250
learning_rate = 0.025
momentum = 0.6

hidden_2 = 140
hidden_3 = 60
in_channels_2 = 16
out_channels_2 = 10
patch_size = 24

Table 6: Parameters used by the best classifier

This combination of values was evaluated in the test dataset,
producing the following results:

Figure 7: Statistics of best classifier in the test dataset

The accuracies of epithelial, inflammatory, and background
classes are high. The accuracy of the fibroblast class is decent.
And the accuracy of the miscellaneous class is bad. The F-Score

is good enough. Compared to the F-Score of the original paper
we did not do that well, but it was close.

Results and Analysis for Detection

Once the best classifier was selected, the detection software
should use the best classifier to scan images pixel by pixel. In
the 2 next figures, detection was pretty accurate. Compare the
marked nuclei based on ground truth on the right of each image
and the detection results on the left.

Figure 8: Example of detection in img89.png

Figure 9: Example of detection in img81.png

Not all results were satisfying. In the next figure, the red class
(epithelial nuclei) produced many false positives. This can be
improved by exploring more the meta-parameters and the neural
architectures of the convnets. More layers, deeper learning, are
probably required.

Figure 10: Example of detection in img69.png

The detection statistics of the test dataset are good. The average
F-score is 0.47 and the average accuracy is 0.73, with standard
deviations of 0.16 approximately. Accuracy is higher than F-
score because the accuracy of the background classifier is high,
which makes the amount of true negatives very big. The
background classifier has a high accuracy because background
is the most abundant class, covering more than 75% of the area
of images approximately. More data produce more accurate
classifiers.

Figure 11: Detection statistics compared to original paper

Conclusion

Based on the experiments and observations, there is potential in
this project. However, more exploration is required to achieve
greater performance. The meta-optimization process should be
better distributed among multiple processors in the cloud. The
motivation to achieve better results is imperative because this
will help the healthcare industry in a huge and unquantifiable
way. Human lives cost more than money.

Even if this algorithm is not 100% accurate, it should be better
than the average performance of humans to be adopted as a
reliable and groundbreaking technology. This is a requirement
for every AI system which is supposed to recommend actions
and perceptions to humans.

Making the visual classifier stronger is paramount for new
versions of the project. The classifier should emit confident
signals when it is passed at the center of tumors, and should
avoid false positives as well.

The miscellaneous category of tumors is hard to predict because
this category is ill-defined. In other words, many categories of
tumors that rarely appear are grouped together to form a bigger
category. However, this should not be a problem for deep
learning because deeper and wider convnets should be able to
make a good variety of complex features capable of
characterizing these ill-defined and less frequent categories.
However, tuning such neural topologies is hard due to the
exponential nature of meta-optimization methods and the
computational cost of training neural networks.

Creating the background class definitely improved results and
reduced the amount of false positives. By using only 4 classes,
the initial images were totally green, implying the detector saw
fibroblasts everywhere, which is wrong. When using 5 classes,
the detected images improved dramatically, making the
observer feel that the vision system is starting to gain visual
awareness.

References

[1] Sirinukunwattana et al., “Locality Sensitive Deep Learning
for Detection and Classification of Nuclei in Routine Colon
Cancer Histology Images”, IEEE Transactions on Medical
Imaging, 2016. (in press)

[2] E. Cosatto, M. Miller, H. P. Graf, and J. S. Meyer, “Grading
nuclear pleomorphism on histological micrographs,” in Pattern
Recognition, 2008. ICPR 2008. 19th International Conference
on. IEEE, 2008, pp. 1–4

[3] Y. Al-Kofahi, W. Lassoued, W. Lee, and B. Roysam,
“Improved automatic detection and segmentation of cell nuclei
in histopathology images,” Biomedical Engineering, IEEE
Transactions on, vol. 57, no. 4, pp. 841–852, 2010.

[4] C. Arteta, V. Lempitsky, J. A. Noble, and A. Zisserman,
“Learning to detect cells using non-overlapping extremal
regions,” in Medical image computing and computer-assisted
intervention –MICCAI 2012. Springer, 2012, pp. 348–356.

[5] J. P. Vink, M. Van Leeuwen, C. Van Deurzen, and G. De
Haan, “Efficient nucleus detector in histopathology images,”
Journal of microscopy, vol. 249, no. 2, pp. 124–135, 2013

[6] A. A. Cruz-Roa, J. E. A. Ovalle, A. Madabhushi, and F. A.
G. Osorio, “A deep learning architecture for image

representation, visual interpretability and automated basal-cell
carcinoma cancer detection,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2013. Springer,
2013, pp. 403-410.

[7] D. Ciresan, A. Giusti, L. M. Gambardella, and J.
Schmidhuber, “Deep neural networks segment neuronal
membranes in electron microscopy images,” in Advances in
neural information processing systems, 2012, pp. 2843–2851

[8] A. Vedaldi and K. Lenc, “Matconvnet – convolutional neural
networks for Matlab,” CoRR, vol. abs/1412.4564, 2014.

[9] D. J. Hand and R. J. Till, “A simple generalization of the
area under the ROC curve for multiple class classification
problems,” Machine learning, vol. 45, no. 2, pp. 171–186, 2001.

[10] Y. Xie, F. Xing, X. Kong, H. Su, and L. Yang, “Beyond
classification: Structured regression for robust cell detection
using convolutional neural network,” in Medical Image
Computing and Computer-Assisted Intervention MICCAI 2015.
Springer, 2015, pp. 358–365.

[11] Y. Xie, X. Kong, F. Xing, F. Liu, H. Su, and L. Yang,
“Deep voting: A robust approach toward nucleus localization in
microscopy images,” in Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Springer,
2015, pp. 374–382

